Brain glucose concentrations in poorly controlled diabetes mellitus as measured by high-field magnetic resonance spectroscopy.
نویسندگان
چکیده
Hyperglycemia and diabetes alter the function and metabolism of many tissues. The effect on the brain remains poorly defined, but some animal data suggest that chronic hyperglycemia reduces rates of brain glucose transport and/or metabolism. To address this question in human beings, we measured glucose in the occipital cortex of patients with poorly controlled diabetes and healthy volunteers at the same levels of plasma glucose using proton magnetic resonance spectroscopy. Fourteen patients with poorly controlled diabetes (hemoglobin A 1c = 9.8% +/- 1.7%, mean +/- SD) and 14 healthy volunteers similar with respect to age, sex, and body mass index were studied at a plasma glucose of 300 mg/dL. Brain glucose concentrations of patients with poorly controlled diabetes were lower but not statistically different from those of control subjects (4.7 +/- 0.9 vs 5.3 +/- 1.1 micromol/g wet wt; P = .1). Our sample size gave 80% power to detect a difference as small as 1.1 micromol/g wet wt. We conclude that chronic hyperglycemia in diabetes does not alter brain glucose concentrations in human subjects.
منابع مشابه
13C-nuclear magnetic resonance spectroscopy studies of hepatic glucose metabolism in normal subjects and subjects with insulin-dependent diabetes mellitus.
To determine the effect of insulin-dependent diabetes mellitus (IDDM) on rates and pathways of hepatic glycogen synthesis, as well as flux through hepatic pyruvate dehydrogenase, we used 13C-nuclear magnetic resonance spectroscopy to monitor the peak intensity of the C1 resonance of the glucosyl units of hepatic glycogen, in combination with acetaminophen to sample the hepatic UDP-glucose pool ...
متن کاملBrain glucose concentrations in patients with type 1 diabetes and hypoglycemia unawareness.
Although it is well established that recurrent hypoglycemia leads to hypoglycemia unawareness, the mechanisms responsible for this are unknown. One hypothesis is that recurrent hypoglycemia alters brain glucose transport or metabolism. We measured steady-state brain glucose concentrations during a glucose clamp to determine whether subjects with type 1 diabetes and hypoglycemia unawareness may ...
متن کاملNuclear magnetic resonance studies of hepatic glucose metabolism in humans.
Nuclear magnetic resonance (NMR) spectroscopy has made noninvasive and repetitive measurements of human hepatic glycogen concentrations possible. Monitoring of liver glycogen in real-time mode has demonstrated that glycogen concentrations decrease linearly and that net hepatic glycogenolysis contributes only about 50 percent to glucose production during the early period of a fast. Following a m...
متن کاملSteady-State Brain Glucose Concentrations During Hypoglycemia in Healthy Humans and Patients With Type 1 Diabetes
The objective of this study was to investigate the relationship between plasma and brain glucose levels during euglycemia and hypoglycemia in healthy subjects and patients with type 1 diabetes mellitus (T1DM). Hyperinsulinemic euglycemic (5 mmol/L) and hypoglycemic (3 mmol/L) [1-(13)C]glucose clamps were performed in eight healthy subjects and nine patients with uncomplicated T1DM (HbA(1c) 7.7 ...
متن کاملMechanism by which metformin reduces glucose production in type 2 diabetes.
To examine the mechanism by which metformin lowers endogenous glucose production in type 2 diabetic patients, we studied seven type 2 diabetic subjects, with fasting hyperglycemia (15.5 +/- 1.3 mmol/l), before and after 3 months of metformin treatment. Seven healthy subjects, matched for sex, age, and BMI, served as control subjects. Rates of net hepatic glycogenolysis, estimated by 13C nuclear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Metabolism: clinical and experimental
دوره 54 8 شماره
صفحات -
تاریخ انتشار 2005